空间数据的可视化有哪些基本类型与方法
空间数据模型概念和主要类型:
空间数据模型是关于现实世界中空间实体及其相互间联系的描述。空间数据模型的主要类型:基于对象(要素)的模型;网络模型;场模型。
要素模型:
点对象,由特定位置、维数为零的物体;线对象,维度为一的空间组成部分;多边形对象,即面状实体,通常用封闭曲线加内点来表示。矢量模型即是基于要素的,将现象看成原型实体的集合,矢量模型的表达源于空间实体的本身,通常以坐标来定义。
网络模型:地物被抽象为链、节点等对象,同时要注意其连通关系。
场模型:
用于模拟一定空间内连续分布的现象,常用栅格数据模型描述。栅格数据模型是基于连续铺盖的,它是将连续空间离散化,以规则或不规则的铺盖覆盖整个空间。
基于对象的模型强调了离散对象,网络模型表示了特殊对象之间的交互,场模型表示了二维或三维空间中连续变化的数据。
要素模型和场模型的不同在于一个是先选择要素,再回答它在哪里的问题;场模型实现选择一个位置,在回答哪里怎么样的问题,最后都得到数据。网络模型的基本特征是:节点数据之间没有明确的从属关系,一个节点可以与其他多个节点建立联系,将数据组织成有向图结构,它反映了现实世界中常见的多对多关系,在一定程度上支持数据的重构。
数据可视化技术是什么
数据可视化技术是关于数据视觉表现形式的科学技术研究,这种数据的视觉表现形式被定义为,一种以某种概要形式抽提出来的信息,包括相应信息单位的各种属性和变量。主要指的是技术上较为高级的技术方法,而这些技术方法允许利用图形、图像处理、计算机视觉以及用户界面,通过表达、建模以及对立体、表面、属性以及动画的显示,对数据加以可视化解释。与立体建模之类的特殊技术方法相比,数据可视化所涵盖的技术方法要广泛得多。数据可视化技术主要运用于报表与BI领域。其具有以下几个基本概念。
数据可视化技术包含以下几个基本概念:(1)数据空间,是由n维属性和m个元素组成的数据集所构成的多维信息空间。(2)数据开发,是指利用一定的算法和工具对数据进行定量的推演和计算。(3)数据分析,指对多维数据进行切片、块、旋转等动作剖析数据,从而能多角度多侧面观察数据。(4)数据可视化,是指将大型数据集中的数据以图形图像形式表示,并利用数据分析和开发工具发现其中未知信息的处理过程。
数据可视化的交互技术有哪些
一、常用的数据可视化技术
数据可视化技术在应用过程中,多数非技术驱动,而是目标驱动。如图显示了目前业界广泛使用的根据目标分类的数据可视化方法,数据可视化目标抽象为对比、分布、组成以及关系。
按目标分类的常用数据可视化方法
1、对比。比较不同元素之间或不同时刻之间的值。
2、分布。查看数据分布特征,是数据可视化最为常用的场景之一。
3、组成。查看数据静态或动态组成。
4、关系。查看变量之间的相关性,这常常用于结合统计学相关性分析方法,通过视觉结合使用者专业知识与场景需求判断多个因素之间的影响关系。
大规模数据可视化一般认为是处理数据规模达到TB或PB级别的数据。经过数十年的发展,大规模数据可视化经过了大量研究,重点介绍其中的并行可视化和原位(in situ)可视化。
(1)并行可视化
并行可视化通常包括3种并行处理模式,分别是任务并行、流水线并行、数据并行。
任务并行将可视化过程分为独立的子任务,同时运行的子任务之间不存在数据依赖。
流水线并行采用流式读取数据片段,将可视化过程分为多个阶段,计算机并行执行各个阶段加速处理过程。
数据并行是一种“单程序多数据”方式,将数据划分为多个子集,然后以子集为粒度并行执行程序处理不同的数据子集。
(2)原位可视化
数值模拟过程中生成可视化,用于缓解大规模数值模拟输出瓶颈。根据输出不同,原位可视化分为图像、分布、压缩与特征。
输出为图像的原位可视化,在数值模拟过程中,将数据映射为可视化,并保存为图像。
输出为分布数据的原位可视化,根据使用者定义的统计指标,在数值模拟过程中计算统计指标并保存,后续进行统计数据可视化;
输出为压缩数据的原位可视化采用压缩算法降低数值模拟数据输出规模,将压缩数据作为后续可视化处理的输入;
输出为特征的原位可视化采用特征提取方法,在数值模拟过程中提取特征并保存,将特征数据作为后续可视化处理的输入。
(3)时序数据可视化
时序数据可视化是帮助人类通过数据的视角观察过去,预测未来,例如建立预测模型,进行预测性分析和用户行为分析。
面积图可显示某时间段内量化数值的变化和发展,最常用来显示趋势。气泡图可以将其中一条轴的变量设置为时间,或者把数据变量随时间的变化制成动画来显示。蜡烛图通常用作交易工具。
甘特图通常用作项目管理的组织工具,热图通过色彩变化来显示数据,直方图适合用来显示在连续间隔或特定时间段内的数据分布。
折线图用于在连续间隔或时间跨度上显示定量数值,最常用来显示趋势和关系。南丁格尔玫瑰图绘制于极坐标系之上,适用于周期性时序数据。OHLC图通常用作交易工具。
螺旋图沿阿基米德螺旋线绘制基于时间的数据。堆叠式面积图的原理与简单面积图相同,但它能同时显示多个数据系列。量化波形图可显示不同类别的数据随着时间的变化。
另外,具有空间位置信息的时序数据,常常将上述可视化方法地图结合,例如轨迹图。
空间信息可视化有哪些形式
(1) 地图可视化 地图有纸质地图、电子地图等形式,其中电子地图是空间数据最主要的一种可视化形式 (2) 多媒体地学信息可视化 多媒体地学信息是使用文本、表格、声音、图像、图形、动画、视频等各种形式逻辑地联结并集成为一个整体概念,综合、形象地表达空间信息。多媒体形式能够真实地表示空间信息某些特定方面,是表示空间信息的重要形式 (3) 三维仿真地图 三维仿真地图是基于三维仿真和计算机三维真实图形技术而产生的三维地图。三维仿真地图是表示地质体、矿山、海洋、大气等地学真三维数据场的重要手段 (4) 虚拟环境 虚拟环境是利用虚拟现实技术在空间数据库支持下构建虚拟地理环境。虚拟现实技术将用户与计算机视为一个整体,通过各种直观的工具将信息可视化,用户直接置身于这种三维信息空间中自由地操作各种信息。虚拟现实向人们提供一个与现实生活世界极为相似的虚拟世界。由于虚拟环境的可交互、可量测和可感知的特点,它在国民经济建设、国防、教育、科研和文化等方面得到广泛的应用。
大数据 分类型数据可视化方法研究报告
大数据:分类型数据可视化方法研究报告
数据可视化可以将海量数据通过图形、表格等形式直观反映给大众。降低数据读取门槛,可以让企业通过形象化方式对自身产品进行营销。
一、数据可视化原理
数据化可视原理是综合运用计算机图形学、图像、人机交互等技术,将采集或模拟的数据映射为可识别的图形、图像、视频或者动画,并允许用户对数据进行交互分析的理论方法和技术。
数据可视化可以将不可见的现象转换为可见的图形符号,并从中发现规律从而获取知识。在实际应用中,它可以针对复杂和大规模的数据,还原增强数据中的全局结构和具体细节。
二、 可视化方法
1. 数据采集:数据是可视化对象,可以通过仪器采样,调查记录、模拟计算等方式采集。在可视化解决方案中,了解数据来源采集方法和数据属性,才能有的放矢解决问题。
2. 数据处理和变换:原始数据含有噪音和误差同时数据模式和特征往往被隐藏。通过去噪、数据清洗、提取特征等变换为用户可理解模式。
3. 可视化映射(核心):将数据的数值、空间坐标、不同位置数据间的联系等映射为可视化视觉通道的不同元素如标记、位置、形状、大小和颜色等。最终让用户通过可视化洞察数据和数据背后隐含的现象和规律。
4. 用户感知:用户感知从数据可视化结果中提取信息、知识和灵感。数据可视化可用于从数据中探索新的假设,也可严重相关假设与数据是否吻合,还可帮助专家向公众展示数据中的信息。
用户感知可以在任何时期反作用于数据的采集、处理变换以及映射过程中,如下图所示:
三、具体操作
1. 将指标值图形化
一个指标值就是一个数据,将数据的大小以图形的方式表现。比如用柱形图的长度或高度表现数据大小,这也是最常用的可视化形式。
传统的柱形图、饼图有可能会带来审美疲劳,可尝试从图形的视觉样式上进行一些创新,常用的方法就是将图形与指标的含义关联起来。
比如 Google Zeitgeist 在展现 top10 的搜索词时,展示的就是“搜索”形状的柱形,图形与指标的含义相吻合,同时也做了立体的视觉变化:
2. 将指标图形化
一般用在与指标含义相近的 icon 来表现,使用场景也比较多,如下:
3. 将指标关系图形化
当存在多个指标时,为了挖掘指标之间的关系并将其进行图形化表达,可提升图表的可视化深度。常见有以下两种方式:
借助已有的场景来表现
联想自然或社会中有无场景与指标关系类似,然后借助此场景来表现。
比如百度统计流量研究院操作系统的分布(上图),首先分为 windows、mac 还有其他操作系统, windows 又包含 xp、2003、7等多种子系统。
宇宙星系中也有类似的关系:宇宙中有很多星系,我们最为熟悉的是太阳系,太阳系中又包括各个行星。根据这种关系联想,图表整体借用宇宙星系的场景,将熟知的Windows比喻成太阳系,将XP、Window7等系统比喻成太阳系中的行星,将Mac和其他系统比喻成其他星系。
构建场景来表现
指标之间往往具有一些关联特征,如从简单到复杂、从低级到高级、从前到后等等。如无法找到已存在的对应场景,也可构建场景。
比如百度统计流量研究院中的学历分布:指标分别是小学、初中、高中、本科等等。
各个类目之间是一种阶梯式的关系,因此,平台就设计了一个阶梯式的图直观的反映出了数据呈阶梯式递进的趋势。
再比如:支付宝年初出的个人年度账单中,在描述付款最多的三项时设计了一个类似颁奖台的样式也很出彩:(然而并没有觉得我在哪个类目买买买付款最多有什么骄傲的)
下方图示为供参考的线性化过程,实际可视化思考中,将哪类元素进行图形化或者图形化前后的顺序可能均有不同,需根据具体情况处理。
4. 将时间和空间可视化
时间
通过时间的维度来查看指标值的变化情况,一般通过增加时间轴的形式,也就是常见的趋势图。
空间
当图表存在地域信息并且需要突出表现的时候,可用地图将空间可视化,地图作为主背景呈现所有信息点。
Google Zeitgeist 在 2010 和 2012 年的年度热门回顾中,都是以地图为主要载体(同时也结合了时间),来呈现热门事件:
5. 将数据进行概念转换
先看下生活中的概念转换,当我们需要喝水时,通常会说给我来杯水而不是给我来500ml 的水。要注意来(一)杯水,是具象的,并不是用量化的数据来形容。在这里,500ml就是一个具体的数据,但是它难以被感知,所以用(一)杯的概念来转换。
同样在数据可视化,有时需要对数据进行概念转换。这是为了加深用户对数据的感知,常用方法有对比和比喻。感知就是一个将数据由抽象转化为具象的过程。
对比
比如下图就是一个介绍中国烟民数量的图表。如果只看左半部分中国烟民的数量:32000000(个十百千万十万百万千万亿…)好吧数据量级很大,不论是数零还是数逗号都很容易数错,而且具体这个数字有多大仍然很难感知。让我们目光向右移动,来看右半部分:中国烟民数量超过了美国人口总和,太恐怖了。这样一对比,对数据的感知就加深了。
比喻
下图是一个介绍雅虎邮箱处理数据量大小的图表,大概就是说它每小时处理的电子邮件有近1.2TB,相当于644245094 张打印的纸。
上面这个翻译很无聊是不是,但这并不是问题的重点,这个数它到底有多大呢?文案中用了一个比喻的手法:大意就是将这些邮件打印出来首尾相连可以绕地球4圈。嗯,比香飘飘奶瓶还多3圈。到这里,我相信大家肯定能初步感受到雅虎邮箱每天处理的数据量有多大了吧,而且还没有被打印出来,为地球节省了很多纸(假装环保)。
6.让图表“动”起来
数据图形化完成后,可结合实际情况,将其变为动态化和可操控性的图表,用户在操控过程中能更好地感知数据的变化过程,提升体验。
实现动态化通常以下两种方式: 交互和动画。
交互
交互包括鼠标浮动、点击、多图表时的联动响应等等。下面是百度统计流量研究院的时间分布图,该分布图采用左图右表的联动形式,左图中鼠标浮动则显示对应数据,点击则可以切换选择:
动画
动画包括入场动画、交互过程的动画和播放动画等等。
入场动画:即在页面载入后,给图表一个“生长”的过程,取代“数据载入中”这样的提示文字。
交互动画:用户发生交互行为后,通过动画形式给以及时反馈。
播放动画:通俗的来说就是提供播放功能,让用户能够完整看到数据随时间变化的过程。下图是 Gapminder 在描述多维数据时,提供随时间播放的功能,可以直观感受到所有数据的变化。
数据可视化的方法有哪些?
许多数据可视化方法经常被使用,比如表格、直方图、散点图、折线图、柱状图、饼图、面积图、流程图、泡沫图表等以及图表的多个数据系列或组合像时间线、维恩图、数据流图、实体关系图等。此外,一些数据可视化方法经常被使用,却不像前面那些使用的广泛,它们是平行坐标式、树状图、锥形树图和语义网络等。