本文目录一览:
怎么在移动端用深度学习做实时的物体检测
首先要明确移动端使用深度学习的问题所在:内存、运行速率以及代码体积。知道这些就可以思考这些问题了。
因为跑深度学习多用比较好的GPU,而手机端明显不如电脑,所以需要专门优化代码,这一点可以去借鉴已有的移动端深度学习开发框架,如caffe2、Mxnet、ncnn、mtl等。
如果使用深度学习框架的话,可能就要考虑代码体积和权重大小了,如果你不会网络压缩的话,建议使用小型网络,这样的话权重文件也就不会太大。只与代码体积,百度或者腾讯开源的框架已经降到了几百K。
以上都是基于移动端离线跑的,如果使用云端,那就不用考虑这些了。
什么叫做深度学习框架,其作用是什么
深度学习框架是一种为了深度学习开发而生的工具,库和预训练模型等资源的总和。有了这种框架,看似复杂神秘的深度学习模型开发被大大简化,成为AI开发者的必用利器。
目前,TensorFlow和PyTorch明显领先,其他框架势微。如下图所示,基于TensorFlow和PyTorch的开源项目,明显领先其它框架。注:Keras不算完整的AI框架,另外KerasAPI已经成为TF2.0的高层API。
TensorFlow 是市场需求最多,也是增长最快的框架,它的领先地位不会在短期内被颠覆。 PyTorch 也在迅速发展,尤其在学术界,越来越多的论文代码基于PyTorch。它在工作列表中的大量增加证明了其使用和需求的增加。
TensorFlow和PyTorch两种框架未来相当时间内会趋同共存。现在PyTorch的在学术界广泛采用;而TensorFlow依赖强大的部署能力,是应用首选。未来TensorFlow2.0大大提高易用性(集成Keras,支持动态库EagerExecution等); PyTorch也在利用ONNX提高部署能力。TensorFlow和PyTorch会越来越趋同。
TensorFlow和PyTorch已是未来几年最主流的深度学习框架。围绕这两种框架的软,硬件,和开发者生态将会迅猛发展,新框架越来越难以成长,其他框架差距越来越大。
简述深度学习的基本方法。
深度学习,需要怎么做到?
最佳答案
1、深度学习,首先要学会给自己定定目标(大、小、长、短),这样学习会有一个方向;然后要学会梳理自身学习情况,以课本为基础,结合自己做的笔记、试卷、掌握的薄弱环节、存在的问题等,合理的分配时间,有针对性、具体的去一点一点的去攻克、落实。
2、可以学习掌握速读记忆的能力,提高学习复习效率。速读记忆是一种高效的学习、复习方法,其训练原理就在于激活“脑、眼”潜能,培养形成眼脑直映式的阅读、学习方式。速读记忆的练习见《精英特全脑速读记忆训练》,用软件练习,每天一个多小时,一个月的时间,可以把阅读速度提高5、6倍,记忆力、注意力、思维、理解力等也会得到相应的提高,最终提高学习、复习效率,取得好成绩。如果你的阅读、学习效率低的话,可以好好的去练习一下。
3、要学会整合知识点。把需要学习的信息、掌握的知识分类,做成思维导图或知识点卡片,会让你的大脑、思维条理清醒,方便记忆、温习、掌握。同时,要学会把新知识和已学知识联系起来,不断糅合、完善你的知识体系。这样能够促进理解,加深记忆。
4、做题的时候要学会反思、归类、整理出对应的解题思路。遇到错的题(粗心做错也好、不会做也罢),最好能把这些错题收集起来,每个科目都建立一个独立的错题集(错题集要归类),当我们进行考前复习的时候,它们是重点复习对象,保证不再同样的问题上再出错、再丢分。