24小时接单的黑客

黑客接单,黑客业务,黑客技术,黑客教程,网络安全

电子技术是什么时候初步形成的(电子技术有几个发展阶段,各阶段的的典型特征是什么)

本文目录一览:

我国第一台电子技术诞生于哪一年

1958年,中国第一台计算机——103型通用数字电子计算机研制成功,运行速度每秒1500次

电子技术的发展史

中国是最早发现电、磁的国家,磁石首先应用于指示方向和校正时间,以后由于航海事业发展的需要,我国在十一世纪就发明了指南针。在宋代沈括所著的《梦溪笔谈》中有“方家以磁石磨针锋,则能指南,然常微偏东,不全南也”的记载。这不仅说明了指南针的制造,而且已经发现了磁偏角。直到十二世纪,指南针才由阿拉伯人传入欧洲。

库仑在 1785 年首先从实验室确定了电荷间的相互作用力,电荷的概念开始有了定量的意义。 1820 年,奥斯特从实验时发现了电流对磁针有力的作用,揭开了电学理论的新的一页。同年,安培确定了通有电流的线圈的作用与磁铁相似,这就指出了此现象的本质问题。有名的欧姆定律是欧姆在 1826 年通过实验而得出的。法拉第对电磁现象的研究有特殊贡献,他在 1831 年发现的电磁感应现象是以后电子技术的重要理论基础。在电磁现象的理论与使用问题的研究上,楞次发挥了巨大的作用,他在 1833 年建立确定感应电流方向的定则(楞次定则)。其后,他致力于电机理论的研究,并阐明了电机可逆性的原理。楞次在 1844 年还与英国物理学家焦耳分别独立的确定了电流热效应定律(焦耳 - 楞次定律)。与楞次一道从事电磁现象研究工作的雅可比在 1834 年制造出世界上第一台电动机,从而证明了实际应用电能的可能性。电机工程得以飞跃的发展是与多里沃 - 多勃罗沃尔斯基的工作分不开的。这位杰出的俄罗斯工程师是三相系统的创始者,他发明和制造出三相异步电机和三相变压器,并首先采用了三相输电线。在法拉第的研究工作基础上,麦克斯韦在 1864 年至 1873 年提出了电磁波理论。他从理论上推测到电磁波的存在,为无线电技术的发展奠定了理论基础。 1888 年,赫兹通过实验获得电磁波,证实了麦克斯韦的理论。但实际利用电磁波为人类服务的还应归功于马克尼和波波夫。大约在赫兹实验成功七年之后,他们彼此独立的分别在意大利和俄国进行通信试验,为无线电技术的发展开辟了道路。

1883 年美国发明家爱迪生发现了热电子效应,随后在1904年弗莱明利用这个效应制成了电子二极管,并证实了电子管具有“阀门”作用,他首先被用于无线电检波。 1906 年美国的德弗雷斯在弗莱明的二极管中放进了第三个电极——栅极而发明了电子三极管,从而建树了早期电子技术上最重要的里程碑。集成电路的第一个样品是在 1958 年见诸于世的。

着半导体技术的发展和科学研究、生产与管理等的需要,电子计算机应时而兴起,并且日臻完善。从 1946 年诞生第一台电子计算机以来,已经经历了电子管、晶体管、集成电路及超大规模集成电路四代,每秒运算速度已达 10 亿次。

电子技术的发展推动了人类社会快速变革,社会主义建设离不开电子技术的不断发展,反之,社会的进步,人类的发展同样推动了电子技术的革新。

电子技术的发展阶段

电子技术是十九世纪末、二十世纪初开始发展起来的新兴技术,二十世纪发展最迅速,应用最广泛,成为近代科学技术发展的一个重要标志。在十八世纪末和十九世纪初的这个时期,由于生产发展的需要,在电磁现象方面的研究工作发展得很快。1895 年,H.A.Lorentz 假定了电子存在。1897 年,J.J.Thompson 用试验找出了电子。1904 年, J.A.Fleming 发明了最简单的二极管(diode或 valve),用于检测微弱的无线电信号。 1906 年,L.D.Forest 在二极管中安上了第三个电极(栅极,grid)发明了具有放大作用的三极管,这是电子学早期历史中最重要的里程碑。1948 年美国贝尔实验室的几位研究人员发明晶体管。1958 年集成电路的第一个样品见诸于世。集成电路的出现和应用,标志着电子技术发展到了一个新的阶段。

电子技术研究的是电子器件及其电子器件构成的电路的应用。半导体器件是构成各种分立、集成电子电路最基本的元器件。随着电子技术的飞速发展,各种新型半导体器件层出不穷。现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。 计算机高效率绿色电源

高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进入了电子、电器设备领域。

计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星计划规定,桌上型个人电脑或相关的外围设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。

通信用高频开关电源

通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。

因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。

直流-直流(DC/DC)变换器

DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源), 同时还能起到有效地抑制电网侧谐波电流噪声的作用。

通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。

不间断电源(UPS)

不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。

现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。

目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lVA、2kVA、3kVA等多种规格的产品。

变频器电源

变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器, 将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。

国际上400kVA以下的变频器电源系列产品已经问世。八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。至1997年,其占有率已达到日本家用空调的70%以上。变频空调具有舒适、节能等优点。国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。预计到2000年左右将形成高潮。变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。

高频逆变式整流焊机电源

高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。

逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合, 整流滤波后成为稳定的直流,供电弧使用。

由于焊机电源的工作条件恶劣,频繁的处于短路、燃弧、开路交替变化之中,因此高频逆变式整流焊机电源的工作可靠性问题成为最关键的问题,也是用户最关心的问题。采用微处理器做为脉冲宽度调制(PWM)的相关控制器,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理,解决了目前大功率IGBT逆变电源可靠性。

国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29kg。

大功率开关型高压直流电源

大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X光机和CT机等大型设备。电压高达50~l59kV,电流达到0.5A以上,功率可达100kW。

自从70年代开始,日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz左右的中频,然后升压。进入80年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz以上。并将干式变压器技术成功的应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。

国内对静电除尘高压直流电源进行了研制,市电经整流变为直流,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为25.6kHz。

电力有源滤波器

传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓“电力公害”,例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有0.5~0.6。

电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。滤波器由桥式开关功率变换器和具体控制电路构成。与传统开关电源的区别是:(l)不仅反馈输出电压,还反馈输入平均电流;(2)电流环基准信号为电压环误差信号与全波整流电压取样信号之乘积。

分布式开关电源供电系统

分布式电源供电系统采用小功率模块和大规模控制集成电路作基本部件,利用最新理论和技术成果,组成积木式、智能化的大功率供电电源,从而使强电与弱电紧密结合,降低大功率元器件、大功率装置(集中式)的研制压力,提高生产效率。

八十年代初期,对分布式高频开关电源系统的研究基本集中在变换器并联技术的研究上。八十年代中后期,随着高频功率变换技术的迅述发展,各种变换器拓扑结构相继出现,结合大规模集成电路和功率元器件技术,使中小功率装置的集成成为可能,从而迅速地推动了分布式高频开关电源系统研究的展开。自八十年代后期开始,这一方向已成为国际电力电子学界的研究热点,论文数量逐年增加,应用领域不断扩大。

分布供电方式具有节能、可靠、高效、经济和维护方便等优点。已被大型计算机、通信设备、航空航天、工业控制等系统逐渐采纳,也是超高速型集成电路的低电压电源(3.3V)的最为理想的供电方式。在大功率场合,如电镀、电解电源、电力机车牵引电源、中频感应加热电源、电动机驱动电源等领域也有广阔的应用前景。 电子技术在交通领域中的应用主要为交通系统应用。电力机车目前正在由传统直流电机传动向交流电机传统转变,主要采用GTO控制器件,整流和逆变用PWM控制,所以可使输入电流为正弦波。目前,很多国家在研制采用直线同步电机驱动的磁悬浮列车,一旦该技术成熟并成功应用的话,将会为交通带来一次变革,不仅有利于缩短时间还对节能减排做出重要贡献。电机技术还可以用于汽车的发动机。在现代汽车上,机械式或机电混合式燃油喷射系统已趋于淘汰,电控的燃油喷射装置因其性能卓越而被广泛应用。通过电子喷油装置可以自动地保证发动机始终在最佳工作状态,使其输出功率在一定的条件下最大限度地节油和净化空气。同时通过实验获得最佳的工作条件,并输入存储器中,当发动机开始工作时,根据传感器测得的空气流量、排气管中的含氧量等参数,按照事先编号的运算程序运行,然后控制发动机在最佳工况下。

目前汽车电子技术已发展到第四代,即包括电子技术(含微机技术)、优化控制技术、传感器技术、网络技术、机电一体化耦合交叉技术等综合技术的小系统,并且早已从科研阶段进入了商品生产的成熟阶段(例如制动、转向和悬架的集中控制以及发动机和变速器的集中控制)。同时,智能化集成传感器和智能执行机构将付诸实用,数字式信号处理方式将应用于声音识别、安全碰撞、适时诊断和导航系统等。 电源系统的绿色化有两层含义:首先是显著节电, 这意味着发电容量的节约,而发电是造成环境污染的重要原因,所以节电就可以减少对环境的污染;其次这些电源不能(或少)对电网产生污染,国际电工委员会(IEC)对此制定了一系列标准,如IEC555、IEC917、IECl000等。事实上,许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合许多毛刺尖峰,甚至出现缺角和畸变。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种修正功率因数的方法。这些为2l世纪批量生产各种绿色开关电源产品奠定了基础。

现代电力电子技术是开关电源技术发展的基础。随着新型电力电子器件和适于更高开关频率的电路拓扑的不断出现,现代电源技术将在实际需要的推动下快速发展。在传统的应用技术下,由于功率器件性能的限制而使开关电源的性能受到影响。为了极大发挥各种功率器件的特性,使器件性能对开关电源性能的影响减至最小,新型的电源电路拓扑和新型的控制技术,可使功率开关工作在零电压或零电流状态,从而可大大的提高工作频率,提高开关电源工作效率,设计出性能优良的开关电源。

总而言之,电力电子及开关电源技术因应用需求不断向前发展,新技术的出现又会使许多应用产品更新换代,还会开拓更多更新的应用领域。开关电源高频化、模块化、数字化、绿色化等的实现,将标志着这些技术的成熟,实现高效率用电和高品质用电相结合。这几年,随着通信行业的发展,以开关电源技术为核心的通信用开关电源,仅国内有20多亿人民币的市场需求,吸引了国内外一大批科技人员对其进行开发研究。开关电源代替线性电源和相控电源是大势所趋,因此,同样具有几十亿产值需求的电力操作电源系统的国内市场正在启动,并将很快发展起来。还有其它许多以开关电源技术为核心的专用电源、工业电源正在等待着人们去开发。

  • 评论列表:
  •  北槐缪败
     发布于 2022-10-24 08:24:47  回复该评论
  • 装置网侧功率因数恶化的现象,即所谓“电力公害”,例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有0.5~0.6。电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置
  •  纵遇雨安
     发布于 2022-10-24 06:25:37  回复该评论
  • 源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC
  •  冬马芩酌
     发布于 2022-10-24 03:27:22  回复该评论
  • 多毛刺尖峰,甚至出现缺角和畸变。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种修正功率因数的方法。这些为2l世纪批量生产各种绿色开关电源产品奠定了基础。现代电力电子技术是开关电源技术发展的基础。随着新型电力电子器件和适于更高开关频率的电路拓扑的不断出现,现代电源技术将在
  •  性许粢醍
     发布于 2022-10-24 09:59:13  回复该评论
  • 率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。 计算机高效率绿色电源高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进入了电子、电器设备领域。计算机技术的发展,提出绿色

发表评论:

«    2025年1月    »
12345
6789101112
13141516171819
20212223242526
2728293031
文章归档
标签列表

Powered By

Copyright Your WebSite.Some Rights Reserved.