24小时接单的黑客

黑客接单,黑客业务,黑客技术,黑客教程,网络安全

数据治理的关键技术(数据治理百科)

本文目录一览:

数据治理的数据治理成功的关键——元数据管理

独立企业数据集成软件提供商Informatica公司(纳斯达克代码:INFA)认为:数据治理成功的关键在于元数据管理,即赋予数据上下文和含义的参考框架。经过有效治理的元数据可提供数据流视图、影响分析的执行能力、通用业务词汇表以及其术语和定义的可问责性,最终提供用于满足合规性的审计跟踪。元数据管理成为一项重要功能,让 IT 部门得以监视复杂数据集成环境中的变化,同时交付可信、安全的数据。因此,良好的元数据管理工具在全局数据治理中起到了核心作用。 Informatica将数据治理定义为“在组织范围内,对流程、政策、标准、技术和人员进行职能协调和定义来将数据作为公司资产管理,从而实现对准确、一致、安全且及时的数据的可用性管理和可控增长,以此制定更好的业务决策,降低风险并改善业务流程”。

数据治理着重于交付可信、安全的信息,为制定明智的业务决策、有效的业务流程并优化利益相关方交互提供支持。因此,数据治理本身并非是结果,而仅仅是方法:即通过数据治理来支持最关键的业务目标。 正如某家大型银行的高管所言:“如果没有数据治理,任何元数据管理方案注定会失败。”元数据管理可作为一项重要功能,让IT部门得以管理复杂数据集成环境中的变化,同时交付可信、安全的数据。当业务利益相关方参与这一进程并接受对数据参考框架的责任,其优势将变得更有说服力。此时,企业就能将业务元数据与基层的技术元数据进行关联,为全公司范围内的协作提供词汇表和背景资料。

例如,当业务用户要求其在 IT 部门的搭档在报告或分析中显示“净收入”,就无需再提问“哪种净收入——财务、销售还是市场营销?”除提供其他优势外,良好的元数据管理还可通过免除此类重要问题,促进数据治理:

· 这个业务术语的含义是什么?

· 在(几个相似的)业务术语中应当使用哪一个?

· 该术语的来源是什么?

· 该数据从数据源转移到目标时是如何进行转换的?

· 由谁负责该术语的定义、记录和管理?

· 谁修改过该术语?如何及何时进行修改?

· 哪些政策和规则适用于该术语?(示例包括数据质量规则、安全屏蔽规则、存档规则和数据保留政策)

· 修改环境中的某一特定数据对象会对其他数据对象产生哪些影响?

· 在不对可能使用相同数据对象的其他报告和分析造成影响的前提下,需要多长时间来实施环境变更? 一系列公司方案推动了数据治理的进展,也由此带动了元数据管理。这些方案包括:

· 通用业务词汇表(简单的数据管理)。这种“小规模试水”方法着重于某一特定问题或业务部门的通用业务词汇表。

· 全面数据治理(或数据管理策略)。这是一种更近似由上至下的方式,通常用于涉及企业内一系列业务部门的较大规模计划,并以按多个阶段(如果不是更长时间)进行管理的计划中的多个商机为目标。

· 合规。此类方案的推动因素是为遵守国际、国家、当地或行业法规的需求。合规——通常由一个治理、风险与合规性(GRC)职能部门进行管理,显然与数据治理唇齿相依。在发现、分析和记录企业的多项内部数据治理要求的同时,还必须与适用外部法规的相关特定要求进行统筹协调。其中部分示例包括:

· 银行业:Basel II、Basel III、多德弗兰克法案(Dodd Frank)、洗钱法案

· 保险业:偿付能力监管标准II(Solvency II )

· 医疗保健:HITECH Act、HIPAA

· 一般金融服务:萨班斯—奥克斯利法案

· 元数据管理。这是更上一层楼的做法,将元数据管理和数据治理作为“最佳实践”与各个新的业务方案挂钩。该方案对业务案例和项目范围进行定义。在多家未能成功实施较大型数据治理方案的公司中,这一方法则取得了成功。 几乎所有企业都面临着管理数据量、速度和种类的挑战。Hadoop/MapReduce 技术在复杂数据分析能力以及按相对低廉的成本实现最大数据扩展性方面提供了一些有趣的优势。Hadoop 在不久的将来取代关系性DBMS的可能性不大,这两项技术更有可能并存,因为它们各有独到之处。虽然用于管理和分析数据的技术可能不同,元数据管理和数据治理的目标应始终保持不变:为支持良好的业务决策提供可信、及时且相关的信息。不存在所谓的“大数据治理”或“大数据元数据管理”——相反,这是一个将全局企业数据治理和元数据管理活动加以扩展来包容全新数据类型和数据源的问题。

Hadoop带来的挑战之一就是元数据管理。如果没有良好的元数据管理和数据治理,Hadoop将会缺乏透明度、可审计性以及数据的标准化与重复利用能力。企业仍将需要对数据相关关键信息的可见性,例如其来源、质量和所有权,否则就必须承受Hadoop变成环境内的又一个数据孤岛的风险。在该领域涌现的 HCatalog 和Hive /HiveQL等新技术将使得从非结构化和半结构化数据中收集元数据变得更加简易,从而实现Hadoop上的数据沿袭。这些功能对于将Hadoop集成入总体数据集成框架,以防止大数据在企业中遭到孤立隔绝,可如同任何其他数据源一样进行治理至关重要。 Informatica可提供功能齐全而又稳健可靠的工具,具备交付可信、安全的数据和启动成功的元数据管理方案所需的全部精确功能。Metadata Manager BusinessGlossary可提供独一无二的多项优势,让IT经理能够尽量降低在实施变更时对关键业务数据造成损害的业务风险。

InformaticaMetadata Manager Business Glossary是 InformaticaPowerCenter Standard Edition的关键组件之一。它可提供为数据治理方案奠定基础所需的核心元数据管理工具。Metadata Manager Business Glossary是一项单个产品,配备一个共享的元数据信息库。它具备两个用户界面,供两类截然不同的用户使用:

· MetadataManager 可让 IT 人员处理技术元数据。

· Business Glossary 可让业务和 IT 管理员协同管理业务元数据。

ITSS WG1发布的白皮书表明

数据治理模型包括三个框架:范围,促成因素和执行及评估。他们每个方面都包含许多组件来进行展示和描述它们是如何工作的。该框架显示数据治理内部的逻辑关系。范围展示了我们应该关注什么,促成因素展示了数据治理的推动因素,执行和评估展示了如何实现治理的方法。该DG模型可以通过三个框架帮助我们理解数据治理。

数据治理的范围包括四个层次的内容。首先,应该 有一个治理要素负责管理其它管理要素,保证治理与管理的一致性。其次,下面的三个层次分别列示了需要治理的数据管理要素,其中价值创造层列示了通过数据治理所创造的价值服务。价值保证层描述了一个组织治理数据时重要保证服务。基础数据服务层描述了一个数据治理的基础数据服务。

什么是数据治理?

什么是数据治理?

数据治理是流程、角色、政策、标准和指标的集合,可确保有效和高效地使用信息,使组织能够实现其目标。它建立了流程和职责,以确保整个企业或组织中使用的数据的质量和安全性。数据治理定义了谁可以对什么数据、在什么情况下、使用什么方法采取什么行动。

精心设计的数据治理策略对于任何处理大数据的组织来说都是基础,它将解释业务如何从一致、通用的流程和职责中受益。业务驱动因素强调在数据治理策略中需要谨慎控制哪些数据以及从这项工作中获得的预期收益。此策略将成为数据治理框架的基础。

例如,如果数据治理策略的业务驱动因素是确保医疗保健相关数据的隐私,则需要在患者数据流经业务时对其进行安全管理。将定义保留要求(例如,谁更改了哪些信息以及何时更改的历史记录)以确保符合相关政府要求,例如GDPR。

数据治理可确保明确定义与数据相关的角色,并在整个企业内就责任和问责制达成一致。精心规划的数据治理框架涵盖战略、战术和运营角色和职责。

数据治理不是什么

数据治理经常与其他密切相关的术语和概念混淆,包括数据管理和主数据管理。

数据治理不是数据管理

数据管理是指对组织全数据生命周期需求的管理。数据治理是数据管理的核心组成部分,将其他九个学科联系在一起,例如数据质量、参考和主数据管理、数据安全、数据库操作、元数据管理和数据仓库。

数据治理不是主数据管理

主数据管理 (MDM) 侧重于识别组织的关键实体,然后提高这些数据的质量。它确保拥有有关客户、供应商、服务提供者等关键实体的最完整和准确的可用信息。由于这些实体在整个组织中共享,因此主数据管理是将这些实体的碎片化视图整合到一个视图中——超越数据治理的纪律。

但是,没有适当的治理就没有成功的 MDM。例如,数据治理计划将定义主数据模型(客户、产品等的定义是什么),详细说明数据的保留策略,并定义数据创作、数据管理和访问的角色和职责.

数据治理不是数据管理

数据治理可确保为合适的人员分配合适的数据职责。数据管理是指为确保数据准确、可控且易于被相关方发现和处理的必要活动。数据治理主要是关于战略、角色、组织和政策,而数据管理则是关于执行和运营。

数据管理员负责数据资产,确保实际数据与数据治理计划一致,与其他数据资产相关联,并在数据质量、合规性或安全性方面受到控制。

数据治理的好处

有效的数据治理策略可为组织带来许多好处,包括:

对数据的共同理解——数据治理为数据提供了一致的视图和通用术语,同时各个业务部门保留了适当的灵活性。

提高数据质量——数据治理创建了一个确保数据准确性、完整性和一致性的计划。

数据地图——数据治理提供了一种高级能力来了解与关键实体相关的所有数据的位置,这对于就像GPS可以代表物理景观并帮助人们在未知景观中找到方向一样,数据治理使数据资产变得可用并且更容易与业务成果联系起来。

每个客户和其他业务实体的360 度视图——数据治理建立了一个框架,以便组织可以就关键业务实体的“单一版本真相”达成一致,并在实体和业务活动之间建立适当的一致性级别。

一致的合规性— 数据治理提供了一个平台来满足政府法规的要求,例如数据安全法、个人信息保护法欧盟通用数据保护条例 (GDPR)和行业要求,例如 PCI DSS(支付卡行业数据安全标准)。

改进数据管理——数据治理将人的维度带入高度自动化、数据驱动的世界。它建立了数据管理的行为准则和最佳实践,确保传统数据和技术领域(包括法律、安全和合规等领域)以外的问题和需求得到一致解决。

大数据时代如何做好数据治理

企业数据分析系统的数据来源是各个业务系统或手工数据,这些数据的格式、内容等都有可能不同。如果不进行数据治理,数据的价值难以发挥。只有对数据标准进行规范,管理元数据、数据监控等,才能得到高质量的数据。得到规范的数据后,才可在此基础上进行主题化的数据建模、数据挖掘、数据分析等。

2013年被众多的IT人定义为中国的大数据元年,这一年国内的大数据项目开始在交通、电信、金融部门被广泛推动。各大银行对Hadoop的规划、POC尤其风生水起,带动了一波大数据应用的热潮,这个热潮和当初数据仓库进入中国时的2000年左右很相似:应用还没有想好,先归集一下数据,提供一些查询和报表,以技术建设为主,业务推动为辅。这就导致了这股Hadoop热潮起来的时候,传统企业都是以数据归集为主的,而BAT这样的企业则天生以数据为生,早早进入了数据驱动技术和业务创新的阶段。

随着Hadoop技术的提升,数据如何进来,如何整合,开展什么样的应用都已经有了成熟的案例,可是,同传统数仓时代一样,垃圾进垃圾出,如何破?相比传统数仓时代,进入Hadoop集群的数据更加的多样、更加的复杂、量更足,这个数仓时代都没有处理好的事情,如何能够在大数据时代处理好,这是所有大数据应用者最最期盼的改变,也是大数据平台建设者最有挑战的难题:数据治理难的不是技术,而是流程,是协同,是管理。 睿治数据治理平台平台架构

元数据:采集汇总企业系统数据属性的信息,帮助各行各业用户获得更好的数据洞察力,通过元数据之间的关系和影响挖掘隐藏在资源中的价值。

数据标准:对分散在各系统中的数据提供一套统一的数据命名、数据定义、数据类型、赋值规则等的定义基准,并通过标准评估确保数据在复杂数据环境中维持企业数据模型的一致性、规范性,从源头确保数据的正确性及质量,并可以提升开发和数据管理的一贯性和效率性。

数据质量:有效识别各类数据质量问题,建立数据监管,形成数据质量管理体系,监控并揭示数据质量问题,提供问题明细查询和质量改进建议,全面提升数据的完整性、准确性、及时性,一致性以及合法性,降低数据管理成本,减少因数据不可靠导致的决策偏差和损失。

数据集成:可对数据进行清洗、转换、整合、模型管理等处理工作。既可以用于问题数据的修正,也可以用于为数据应用提供可靠的数据模型。

主数据:帮助企业创建并维护内部共享数据的单一视图,从而提高数据质量,统一商业实体定义,简化改进商业流程并提高业务的响应速度。

数据资产:汇集企业所有能够产生价值的数据资源,为用户提供资产视图,快速了解企业资产,发现不良资产,为管理员提供决策依据,提升数据资产的价值。

数据交换:用于实现不同机构不同系统之间进行数据或者文件的传输和共享,提高信息资源的利用率,保证了分布在异构系统之间的信息的互联互通,完成数据的收集、集中、处理、分发、加载、传输,构造统一的数据及文件的传输交换。

生命周期:管理数据生老病死,建立数据自动归档和销毁,全面监控展现数据的生命过程。

数据安全:提供数据加密、脱敏、模糊化处理、账号监控等各种数据安全策略,确保数据在使用过程中有恰当的认证、授权、访问和审计等措施。

建立完整的、科学的、安全的、高质量的数据管控技术体系,是首要的任务。作为数据管控的基石,为了更好支撑后续工作的开展,技术体系必须一步到位,是功能完备、高质量、高扩展性的,而不是仅实现部分功能,或者功能不完善的“半成品”。

叠加更多业务数据、细化数据业务属性与管理属性、优化与调整数据管控流程,尤其是适应未来的现代企业数据管控制度的建立完善,是逐步积累推广、不断磨合改进的长期过程。这些工作应及早启动,并成为后续大数据平台建设工作的重点。

谈大数据时代的数据治理 当前要做的是功能框架的完善,而完善的着力点则是“数据资产目录”:用资产化的视角来管理一个企业的数据,只有把数据作为资产来认识和管理,大数据项目才能达成预期,也能够治理好。大数据时代带来的价值,个人认为主要有两个,一个是技术架构,主要是架构理念的进步,另外一个更重要的则是对数据的重视。大数据时代是数据的时代,IT向DT转型,不单单是BAT,所有的IT公司,未来都在数据这两个字上。

对于一个企业来说,把数据作为资产,才是建设大数据的最终目的,而不是仅仅是因为Hadoop架构带来性价比和未来的扩展性。当一个企业把数据作为资产,他就像管理自己名下存折、信用卡一样,定期梳理,无时无刻不关心资产的变化情况,关注资产的质量。

而资产目录就是管理资产的形式和手段,他像菜单一样对企业的资产进行梳理、分门别类,提供给使用者;使用者通过菜单,点选自己需要的数据,认可菜单对应的后端处理价值,后厨通过适当的加工,推出相应的数据服务;这是一个标准的流程,而这些流程之上,附着一整套数据管理目标和流程。

大数据平台以数据资产目录为核心,将元数据、数据标准、主数据、数据质量、数据生命周期、数据轮廓等信息在逻辑层面关联起来,在管理层面上整合成统一的整体,构建起数据管理体系,全面的支持数据服务等具体应用。

大数据平台实现了数据存储、清洗和应用。在数据汇入和汇出的过程中,需要对数据的元数据进行统一记录和管理,以利于后续的数据应用和数据血缘分析。数据质量一直是数据集成系统的基础工作,对数据的各个环节设置数据质量检查点,对数据质量进行剖析、评估,以保证后续应用的可信度。

在数据收集的过程中,随着数据维度、指标的聚集,如何找到所需的业务指标及属性,并且评估相关属性的业务及技术细节,需要对收集的所有数据进行业务属性,并进行分类,建立完善的数据资产目录。

数据资产目录是整个大数据平台的数据管理基础,而数据资产目录由于数据的多样性,在使用的过程中,必然涉及数据权限的申请、审批管控流程,而管控流程的建立依赖于相应岗位的设立和对应职责的建立。

大数据平台的数据管理架构规划,通过数据物理集中和数据逻辑整合,彻底摆脱企业“数据竖井”的困境。大数据平台数据管理架构分为功能架构、流向规划和数据架构三个层面。

数据管理功能架构:借鉴DAMA数据管理和DMM数据成熟度理论,着眼于数据管理技术和数据管理流程融合,组织数据管理功能。

数据流向规划架构:规划整个大数据平台的数据流向,并在数据流入、数据整合、数据服务的具体环节实现精细化管理。

数据管理的数据架构:以数据资产目录为核心,数据项为最小管理单元,将技术元数据(实体、属性和关系)、业务元数据和管理元数据(数据标准、主数据、数据质量、数据安全)融合为彼此紧密联系、密不可分的整体,共同构成精细化管理的数据基础。

数据管理在整个大数据平台不仅仅是一个主要功能模块,它还是整个企业层面数据治理的重要组成部分,它是技术和管理流程的融合,也需要合理管控流程框架下组织机构之前的协调合作。如何利用统一的数据管理模块对企业所有进入到数据湖的数据进行有效管控,不单单取决于数据管理模块本身,也取决于元数据的合理采集、维护,组织结构及制度的强力支持保证。

谈大数据时代的数据治理 大数据平台数据管理参照了DAMA对于数据管理的九个管理目标,并进行裁剪,并对部分管理目标进行了合并,并参照了CMMI制定DMM数据成熟度目标,采用循序渐进,逐步完善的策略对管理目标进行分阶段完成,制定完整的管控流程和数据治理规范,以便持续的对数据进行管理,递进实现DMM定义的成熟度目标。

亿信睿治数据治理管理平台和DAMA的对应关系如下:

谈大数据时代的数据治理 大数据平台数据管理的核心内容是数据资产目录,围绕数据资产目录的数据流入、数据整合、数据服务都是数据管理的核心。数据管理主要管理数据的流动,以及管理流动带来的数据变化,并对数据底层的数据结构、数据定义、业务逻辑进行采集和管理,以利于当前和未来的数据使用。为了更好的对数据进行管理和使用,制度层面的建设、流程的设立必不可少,同时也兼顾到数据在流动过程中产生的安全风险和数据隐私风险。

因此数据管理介入到完整的数据流转,并在每个节点都有相应的管理目标对应,整个数据流框架如下图所示:

谈大数据时代的数据治理 企业在建制大数据平台的同时,对进入数据湖的数据进行梳理,并按照数据资产目录的形式对外发布。在发布数据资产之后,则对进出数据湖的数据进行严格的出入库管理,保证数据可信度,并定期进行数据质量剖析检查,确保数据资产完善、安全、可信,避免“不治理便破产”的谶言。

数据治理十步法

以下文章来源于谈数据 ,作者石秀峰

1、找症状,明确目标

任何企业实施数据治理都不是为了治理数据而治理数据,其背后都是管理和业务目标的驱动。企业中普遍存在的数据质量问题有:数据不一致、数据重复、数据不准确、数据不完整、数据关系混乱、数据不及时等。

由于这些数据问题的存在对业务的开展和业务部门之间的沟通造成了较大的困扰,产生了很大的成本;各异构的系统中数据不一致,导致业务系统之间的应用集成无法开展;数据质量差无法支撑数据分析,分析结果与实际偏差较大。然而要实现数据驱动管理、数据驱动业务的目标,没有高质量的数据支撑是行不通的。

目标:企业实施数据治理的第一步,就是要明确数据治理的目标,理清数据治理的关键点。

技术工具:实地调研、高层访谈、组织架构图。

输入:企业数据战略规划,亟待解决的业务问题,经营发展需求,业务需求等;

输出:数据治理的初步沟通方案,项目任务书,工作计划表;

2、理数据,现状分析

针对企业数据治理所处的内外部环境,从组织、人员、流程、数据四个方面入手,进行数据治理现状的分析。

某企业数据治理痛点分析

组织方面:是否有专业的数据治理组织,是否明确岗位职责和分工。

人员方面:数据人才的资源配置情况,包括数据标准化人员、数据建模人员,数据分析人员,数据开发人员等,以及数据人才的占比情况。

流程方面:数据管理的现状,是否有归口管理部门,是否有数据管理的流程、流程各环节的数据控制情况等;

数据方面:梳理数据质量问题列表,例如:数据不一致问题,数据不完整,数据不准确、数据不真实、数据不及时、数据关系混乱,以及数据的隐私与安全问题等。

目标:分析企业数据管理和数据质量的现状,确定初步数据治理成熟度评估方案。

技术工具:实地访谈、调研表、数据质量问题评议表、关键数据识别方法论(例如:主数据特征识别法);

输入:需求及现状调研表、访谈记录、数据样本、数据架构、数据管理制度和流程文件;

输出:数据问题列表、数据U/C矩阵、数据治理现状分析报告、数据治理评估方案;

3、数据治理成熟度评估

数据治理成熟度反映了组织进行数据治理所具备的条件和水平,包括元数据管理、数据质量管理、业务流程整合、主数据管理和信息生命周期管理。

CMMI DMM数据管理能力成熟度评估模型

数据治理成熟度评估是利用标准的成熟度评估工具结合行业最佳实践,针对企业的数据治理现状进行的客观评价和打分,找到企业数据治理的短板,以便制定切实可行的行动方案。数据治理成熟度结束后形成初步的行动方案,一般包括数据治理战略,数据治理指标,数据治理规则,数据治理权责。数据治理愿景和使命是数据治理的整体目标;数据治理指标定义了数据治理目标的衡量方法;数据治理规则和定义包括与数据相关的政策、标准、合规要求、业务规则和数据定义等;权利和职责规定了由谁来负责制订数据相关的决策、何时实施、如何实施,以及组织和个人在数据治理策略中该做什么。

目标:结合业界标准的数据治理成熟度模型,根据企业管理和业务需求进行数据治理成熟的评估,形成初步的数据治理策略和行动路线。

技术工具:数据治理评估模型,例如:DCMM,CMMI DMM,IBM数据治理成熟度评估模型等;

输入:第2步的输入以及数据治理评估模型、数据治理评估工具(评估指标、打分表等);

输出:数据治理评估结果,数据治理策略,初步的行动方案;

4、数据质量问题根因分析

数据治理的目的是解决数据质量问题提升数据质量,从而为数据驱动的数字化企业提供源动力,而提到数据质量问题,做过BI、数仓的同学一定知道,这是一个技术和业务“经常打架”相互推诿的问题。

某企业数据问题根因分析鱼骨图

产生数据质量问题的原因有很多,有业务方面的、有管理方面的、也有技术方面的,按照80/20法则,80%的问题是由20%的原因造成起的。所以,如果能够解决这20%的问题,就能得到80%的改进。

目标:分析并找到数据质量问题产生的根本原因,制定行之有效的解决方案;

技术工具:头脑风暴、5W1H、SWOT、因果(鱼刺)图、帕拉图等;

输入:数据问题列表、数据U/C矩阵、数据治理现状分析报告、数据治理评估结果;

输出:数据质量评估结果、对业务的潜在影响和根本原因。

5、业务影响及实施优先级评估

通过数据治理成熟度评估,从组织、流程、制度、人员、技术等方面找到企业在数据治理的待提升的领域和环节,再通过数据质量根因分析找到数据质量问题发生的根本原因,进一步明确了数据治理的目标和内容。再接下来,就需要确定数据治理策略,定义数据治理的实施优先级。

某企业主数据治理实施优先级评估

不同的数据治理领域解决的是不同的问题,而数据治理的每个领域都有它的实施难点,对企业来说,需要从业务的影响程度,问题的紧急程度、实施的难易程度等多个维度进行分析和权衡,从而找到符合企业需求并满足企业发展的方案。

目标:确定数据治理核心领域和支撑体系的建设/实施优先级;

技术工具:四象限法则(分别从业务影响程度/实施难以程度,问题重要程度/问题紧急程度绘制优先级矩阵)、KANO模型

输入:数据治理成熟度能力评估结果、数据质量问题根因分析结果;

输出:数据治理实施优先级策略

6、制定数据治理行动路线和计划

路线图是使用特定技术方案帮助达到短期或者长期目标的计划,用于新产品、项目或技术领域的开发,是指应用简洁的图形、表格、文字等形式描述技术变化的步骤或技术相关环节之间的逻辑关系。路线图是一种目标计划,就是把未来计划要做的事列出来,直至达到某一个目标,就好像沿着地图路线一步一步找到终点一样,故称路线图。

某企业数据治理实施路线图

企业数据治理的实施路线图的制定是以企业数据战略——愿景和使命为纲领,以急用优先为原则,以分步实施为策略进行了整体设计和规划。实施路线图主要包含的内容:分几个阶段实施,每个阶段的目标、工作内容、时间节点要求、环境条件等。笔者观点:任何一个企业的数据治理都不是一蹴而就,一步到位的,需要循序渐进、持续优化!实施路线图就是基于此产生的,因此说数据治理实施路线图也是说服利益相关者支持的一个重要手段。

目标:确定数据治理的阶段以及每个阶段的目标;

技术工具:路线图法

输入:数据治理成熟度能力评估结果、业务影响及实施优先级评估结果;

输出:数据治理实施路线图或称阶段目标计划

7、制定数据治理详细实施方案

数据治理详细实施方案是用于指导主数据的各项实施工作,一般包括:数据治理核心领域、数据治理支撑体系、数据治理项目管理三个方面。

数据治理总体框架图

数据治理核心领域包括:数据架构、数据服务、元数据管理、数据质量管理、数据标准管理、主数据管理、数据安全管理、数据生命周期管理。

数据治理支撑体系包括:组织(组织架构、组织层次、岗位职责)、制度(管控模式、规章制度、考核机制)、流程(归口部门、管理流程、流程任务等)、技术(数据集成、数据清洗、数据开发、数据应用、数据运营、支撑平台、实施方案等)。

数据治理项目管理方案包括:项目组队、项目计划、质量保证计划、配置管理计划、培训和售后等。

关于数据治理的核心领域,详见笔者之前分享的数据治理框架解读系列文章。

关于数据治理的支撑体系,详见笔者之前分享的数据治理成功关键要素系列文章。

目标:基于数据质量根因分析、业务影响和实施优先级评估结果,制定详细实施方案;

输入:业务影响及实施优先级评估结果,行动路线和计划;

输出:数据治理详细实施方案。

8、数据治理实施过程控制

数据治理实施过程控制是对数据治理项目的范围控制、进度控制、质量控制和成本控制,通过对企业的各项资源的合理协调与利用,而达成的数据治理目标的各种措施。从项目管理的角度来讲也是项目管理的黄金三角:范围、时间、质量、成本。

任何项目的质量和进度是需要良好的项目管理来保证的,数据治理也一样。与传统的软件工程项目不同,数据治理项目有着范围边界模糊、影响范围广、短期难见效、实施周期长等特点:

①范围边界模糊,数据治理涉及到的关键领域如元数据管理、数据质量管理、数据标准管理、主数据管理等很多是存在交叉的,边界很难界定,例如:实施数据质量管理项目,会涉及元数据管理、数据标准管理等,同样一个元数据管理项目也会涉及数据标准和数据质量。

②影响范围广,数据治理的实施不是一个部门能够完成的,是需要从高级管理层、到各业务部门、信息部门通力协作,共同完成的;

③短期难见效,数据治理项目实施完成后,其数据治理的效果被每个业务点滴操作所“稀释”,并不像其他项目,例如BI,那样明显的体现出来,所以主导数据治理的部门会经常遭到质疑。

④实施周期长,在没有清晰的数据治理目标和范围约定的情况下,数据治理是一个“无底洞”。所以,在实施数据治理项目之前制定好实施路线图和详细的实施方案就显得格外重要(第6、7步)。

目标:通过对数据治理项目实施过程的进度控制、质量控制和成本控制以实现数据治理的目标;

技术工具:PP(项目计划)、PMC(项目控制)、IPM(集成项目管理)、RSKM(风险管理)——CMMI过程域;

输入:6-7步的输出:数据治理实施路线图,数据治理详细实施方案;

输出:各项项目控制措施,例如:项目计划、SOW、项目风险列表、项目报告、项目总结等;

9、监控评估数据治理实施效果

随着大数据技术的不断发展,应当从企业的全局数据治理环境的角度,明确数据治理关键技术运用及其标准规范,构建成效评估指标体系,进行治理效果评价;并运用数据治理能力成熟度模型再次评估,界定数据管理层次,从而使得跨系统、跨业务、跨部门的数据治理体系的建设与实施能够通过各方协作顺利进行,实现卓越数据治理,进而通过数据驱动业务、数据驱动管理和运营以实现企业的降本、增效、提质、创新。

某企业数据治理看板(数据已脱敏)

数据治理成效评估指标体系应根据企业及数据治理项目的实际情况制定,一般包括:时间性、数量性、完整性、准确性四个维度。

①时间性即数据的及时性。该维度主要通过源业务系统数据接入的上报及时性、接入及时性等方面进行核对。通过分析月指标、周指标、日指标的数据及时率,得出在规定时间和频度周期内接入系统的比例,以此反映数据接入及时性。

②数量性。该维度是从数据存量,数据增量,数据访问量,数据交换量、数据使用量等指标反映数据的使用情况,可以分为月度指标、周指标、日指标、时分指标等。

③准确性。这个维度主要由各类数据中逻辑的准确性、数据值的准确性、数据频段和字段之间的准确性以及数据的精度等内容组成。该准确率同样包括:月度、每周、每日等准确率指标。 

④完整性。此维度主要以单元维度完整性、数据业务维度组合完整性、索引值完整性等不同方面进行核对,是验证数据质量完整性的主要组成部分,包括月度指标、周指标、日指标数据的完整性等内容。 

目标:检验各项数据治理指标的落实情况,查漏补缺,夯实数据治理效果;

技术工具:数据治理效果的评价指标体系、各种数据图表工具;

输入:数据治理效果评估指标;

输出:数据治理评估的月报、周报、日报等;

10、数据治理持续改进

数据治理模式应业务化、常态化,不应是一个项目、“一阵风”的模式。

图片源自互联网

数据治理工作应向企业生产、销售业务一样作为一项重点的业务工作来开展,构建专业的数据治理组织,设置合适的岗位权责,建立相应的管理流程和制度,让数据标准贯彻到每个业务环节,形成一种常态的工作。在笔者看来,在数据源头加强企业数据的治理,让常态化治理成为日常业务,才能从根本上彻底解决企业数据质量的各种问题,让数据真正转化为企业资产,以实现数据驱动流程优化、数据驱动业务创新、数据驱动管理决策的目标。

目标:数据治理常态化,持续提升数据质量,驱动流程优化和管理创新。

输入:持续的、规范的、标准的各项业务操作;数据治理监控的各项指标和报告;

输出:持续输出的高质量的数据;

博主观点:原理大家都懂,实践时困难重重。在专家的指导下,应用适当的工具可让理论转化为现实。华矩科技,专业的数据治理服务与技术提供商。

  • 评论列表:
  •  冬马纯乏
     发布于 2022-10-28 06:33:36  回复该评论
  • 分析、业务影响和实施优先级评估结果,制定详细实施方案; 输入:业务影响及实施优先级评估结果,行动路线和计划; 输出:数据治理详细实施方案。 8、数据治理实施过程控制 数据治理实施过程

发表评论:

«    2025年1月    »
12345
6789101112
13141516171819
20212223242526
2728293031
文章归档
标签列表

Powered By

Copyright Your WebSite.Some Rights Reserved.