本文目录一览:
无人机关键技术有哪些
无人机关键技术有哪些
无人机在气动力设计要求、设计理念方面与有人机存在较大差别。有人机气动设计通常以航程、速度作为优先优化目标,然而无人机通常以航时作为优先优化目标。那么,下面是由我为大家分享无人机关键技术知识,欢迎大家阅读浏览。
1 能源与动力技术
无人机采用的推进系统形式要比有人飞机多,采用的能源与动力类型各异,包括:传统的小型涡扇发动机、小型涡喷发动机、小型涡桨发动机、活塞发动机、转子发动机以及电池组、太阳能电池、燃料电池、超燃冲压发动机、定向能及核同位素等。
不同用途的无人机对动力装置的要求不同,但都希望动力装置燃油经济性好、重量轻、体积小、可靠性高、成本低、使用维修方便。从经济因素、可靠性等方面考虑,现阶段无人机均采用技术成熟的活塞、涡扇、涡喷、涡桨发动机或在这些发动机基础上进行适应性改进。活塞式发动机适合于低空低速中小型、长航时无人机;涡扇、涡桨发动机适合于高空长航时无人机以及无人作战机,这类发动机油耗低,发动机尺寸、重量和推力能与无人机达到较好的匹配;涡喷发动机适合于低成本、短寿命、高机动的靶机或自杀攻击类无人机。
从长远发展来看,单纯对现有发动机进行改型并不能完全满足无人机对飞行速度、高速、续航性能等指标的要求,开发适合于无人机使用的发动机十分必要,尤其是中小推力的大涵道比、小尺寸核心机的涡扇发动机,这类发动机将是未来无人机动力装置发展的重点。此外,开展太阳能、燃料电池、液氢燃料系统等新型能源的应用研究,可为无人机提供更高效的动力源。
2 无人机平台技术
(1)高效气动力技术。
无人机在气动力设计要求、设计理念方面与有人机存在较大差别。有人机气动设计通常以航程、速度作为优先优化目标,然而无人机通常以航时作为优先优化目标。无人机尺寸小、速度低,存在低雷诺数条件下的高升力、高升阻比、高续航因子设计要求。高效气动力技术是提高无人机性能的重要技术途径。
(2)隐身技术。
提高无人机的生存能力的关键就是降低其可探测性。随着材料、电磁学、热力学、空气动力学等学科的不断发展,越来越多的新技术也将应用于无人机的隐身设计中,具体包括以下几个方面。
外形隐身技术。采用翼身高度融合的无尾飞翼布局、内埋式进气道、二维喷管等设计技术可有效降低雷达反射面积和红外特征,提高无人机的隐身能力。
等离子体隐身技术。理论和试验研究表明,等离子体技术是隐身技术发展的新方向之一,飞行器上安装的等离子发生器所产生的等离子体能对飞行器关键部位进行遮挡,并对雷达照射进行吸收,从而实现飞行隐身。目前,这项技术在研究中暴露出了很多问题,仍有待解决。
主动隐身技术。主动隐身技术是根据照射到飞行器上的电磁波频率、入射方向等,利用机载有源射频发射装置主动地发射与散射回波相位相反、幅度一致的电磁波,实现与散射回波的对消。目前,主动隐身技术尚处于理论与试验研究阶段,但随着隐身技术的发展,特别是飞行器近场散射特性技术、ESM(电子支援措施) 等技术的发展,主动有源对消隐身技术必将成为未来发展的重点。
(3)气动弹性技术。为追求长航时性能,无人机通常采用大展弦比布局以尽可能提高升阻比(如一些无人机展弦比达到30以),采用轻量化机体结构降低飞行重量。但大展弦比布局、轻量化结构与机体强度和刚度要求会产生突出矛盾。
(4)气动载荷设计技术。滞空型无人机一般飞行速度较低、翼载小、升力大,对于同样强度的阵风,无人机阵风载荷比有人机大得多。无人机结构强度一般需要将阵风载荷作为主要的设计工况,而阵风载荷大小决定了无人机结构设计的强度。如果以现有轻型飞机、通用飞机的强度设计标准进行无人机载荷设计,无人机结构将付出很大的代价。以轻量化结构为目标,综合无人机气动力特性、无人机飞行控制操纵方式、无人机设计寿命等因素开展无人机气动载荷设计技术是提高无人机综合性能的重要技术途径。
(5)复合材料结构技术。无人机以复合材料结构为主,不同类型的无人机对复合材料结构有不同的要求,如大型无人机主要对大尺寸、全复材结构有较高要求,而小型无人机对复合材料结构的要求是低成本、快速加工制造、快速修复等。
3 自主控制技术
根据无人机自主控制的定义和内涵,无人机自主控制的关键技术应该包括态势感知技术、规划与协同技术、自主决策技术以及执行任务技术4个方面。
(1)态势感知技术。
实现无人机自主控制必须不断发展态势感知技术,通过各种信息获取设备自主地对任务环境进行建模,包括对三维环境特征的提取、目标的识别、态势的评估等。
(2)规划与协同技术。
规划与协同技术涉及两个方面的技术:路径规划和协同控制。这两个方面相互依托,互相联系。
无人机路径规划与重规划能力是无人机自主控制系统必须具有的,即系统可以根据探测到的态势变化,实时或近实时地规划、修改系统的任务路径,自动生成完成任务的可行飞行轨迹。自主飞行无人机典型的规划问题是如何有效、经济地避开威胁,防止碰撞,完成任务目标。
未来无人机的'工作模式包括无人机单机行动和多机编队协同,协同控制技术主要包括:优化编队的任务航线、轨迹的规划和跟踪、编队中不同无人机间相互的协调,在兼顾环境不确定性及自身故障和损伤的情况下实现重构控制和故障管理等。
(3)自主决策技术。
对于复杂环境下工作的无人机,必然要求具有较强的自主决策能力,以适应未来的需要。自主决策技术需要解决的主要问题包括:任务设定、编队中不同无人机协调工作、机群的使命分解等。
(4)执行任务技术。
无人机自主控制发展的最终目的是使它对环境和任务的变化具有快速的反应能力。无人机自主控制应该具有开放的平台结构,并面向任务、面向效能包含最大的可拓展性。先进的无人机自主控制应当提供编队飞行、多机协同执行任务的能力。
4 网络化通信技术
目前的无人机系统作为相对独立的系统只在局域使用,未来的战场在同一空域将充斥着各种功能、各种类型的无人机与战斗机、直升机。无人机之间、无人机与有人机之间、无人机与地面作战系统必须进行有机协调,使无人机都成为“全球信息栅格”的一个节点,实现无人机与其他无人机或指挥控制系统之间的互联、互通、互操作。
针对无人机集群作战、协同作战以及网络化作战的应用需求,应突破无线宽带分布式动态多址接入、实时鲁棒的宽带传输、数据链网络顽存等关键技术,构建无人机集群数据链自适应网络体系,为实现实时、宽带、安全的无人机集群数据链提供技术支撑。
针对无人机宽带网络多跳中继动态变化、节点容量受限问题,需要将网络编码技术与路由技术相结合,通过选择编码机会最大的路径进行传输、优化基于网络编码的节点接入策略、多跳网络节点间信息交换传输策略,在不增加时延的情况下提高网络吞吐量,实现网络的大容量传输。
5 多任务载荷一体化、平台/任务载荷一体化技术
有效载荷是无人机执行侦察、监视、电子对抗、打击、战效评估任务的关键因素,应用于无人机的有效载荷包括通用传感器(光电、雷达、信号、气象、生化)、武器、货物( 传单、补给品)等。无人机系统作战效能不仅仅对任务载荷本身性能有较高的要求,而且必须满足无人机尺寸、重量、功耗、隐身等装机要素约束以及成本要求。随着电子、通信、计算机等技术的进步,无人机的传感器技术发展主要表现在以下几个方面。
多光谱/超光谱探测技术。该技术可探测可见光和红外区域的几十个甚至几百个频段,它利用检测低反差目标的杂波抑制和光谱识别可以降低误判率,极大提高了目标识别和探测的准确性,常用于探测隐蔽或普通伪装的目标。
先进的合成孔径雷达技术。相对于光电/红外探测系统,合成孔径雷达能在夜间以及能见度低的恶劣天气条件下工作,以高分辨率进行大范围成像侦察,但其设备重量和功耗均较大,只适合于大型无人机装载使用。随着轻型天线和紧凑信号处理装置等技术的进步,合成孔径雷达有向小型化发展的趋势,并可装备于中小型的战术无人机。
激光雷达技术。激光雷达具有分辨率高、隐蔽性好、低空探测性能好、体积小、重量轻等显著优势,不但可以探测“树下目标”,还可以对目标进行分类,为指挥人员提供精确的目标信息。将激光雷达技术与无人机相结合,必将发挥更大的作用。然而当遇到大雨、浓雾、浓烟等恶劣天气时,激光衰减急剧加大,而且大气环流还会导致激光光束发生畸变、抖动,直接影响激光雷达的测量精度。
;
什么叫隐身技术?目前隐身的主要途径有哪些;
隐形技术(stealth technology)俗称隐身技术,准确的术语应该是“低可探测技术”(low observable technology)。即通过研究利用各种不同的技术手段来改变己方目标的可探测性信息特征。
主要技术
采用独特的外形设计和吸波、透波材料,以降低飞机对雷达波的反射;降低飞机发动机喷气的温度或采取隔热、散热措施,减弱红外辐射。
美国的F-117A隐形战斗轰炸机(现已退役)、B-2隐形轰炸机已经装备部队,正在研制的F-22隐形战斗已于2005年服役。
扩展资料;
隐形技术的迅速发展对战略和战术防御系统提出了严峻挑战,迫使人们考虑如何摧隐形身兵器并研究反隐形技术。
隐身技术与反隐形技术的发展,是相互制约、相互促进的,无论哪一方有新的突破,都将引起另一方的重大变革。反隐形技术的发展方向是:综合运用,系统综合(集成),开发新的反隐形技术理论。
由于隐身技术的研究主要是针对雷达探测系统的,所以,反隐形技术的发展重点也是针对雷达的。雷达实现反隐形的技术途径主要有以下三个方面:1提高雷达本身的探测能力;2利用隐形技术的局限性,削弱隐形兵器的隐形效果;3开发能摧毁隐形兵器的武器。
等离子隐身技术
1,什么是等离子 我们知道,能量输入的结果使得物质发生从固态到液态,再从液态到气态的聚集态变化。如果再将额外的能量输入到气体中,气体将发生离子化,并转变为另一种聚集状态,即等离子态。当等离子体和其它物质接触时,所输入的能量被传送到被接触材料表面,并随之产生一系列的作用。 [ 转自铁血社区 ] 2,等离子体隐身技术及其优缺点 等离子体是尺度大于德拜长度(Debye length,静电作用的屏蔽半径)的宏观中性电离气体,其运动主要受电磁力的支配,并表现出显著的集体行为。它是继物质存在的固体、液体、气体三种形态之后出现的第四态物质。在军事上,核爆炸,放射性同位素的射线,高超声速飞行器的激波,燃料中掺有铯、钾、钠等易电离成分的火箭和喷气式飞机的射流,都可以形成弱电离等离子体。等离子体隐身技术是指利用等离子体回避探测系统的一种技术。兵器实现等离子体隐身的基本原理是利用电磁波与等离子体的相互作用,即电磁波在等离子体中传播所产生的吸收、反射、折射和法拉第旋转效应 ,设计等离子的特征参数(能量、电离度、振荡频率和碰撞频率等)满足特定要求,使照射到等离子云上的雷达波:一部分被吸收,一部分由于时变等离子体对入射电磁波的频率上移,这将使雷达回波的频率偏离开敌方接受回波的频谱范围,一部分改变传播方向,因而返回到雷达接收机的能量很少,从而大幅度降低反射波的电磁能量和雷达的RCS;还有等离子体能以电磁波反射体的形式对雷达进行电子干扰,即通过雷达波往返传播途径弯曲,雷达显示屏上出现的是攻击武器的虚像,而不是武器的真实位置以实现隐身。据报道,采用该技术的飞行器被敌方发现的概率可降低99%。等离子体隐身技术的核心是电磁波与等离子体的相互作用。由于等离子体层对雷达波有特殊折射效应和吸收衰减作用,因此等离子体层可以极大地减少雷达目标的电磁回波能量。研究表明,等离子体的电子密度变化对目标隐身效果影响很大,不同磁场可以显著改变等离子体对不同频率的雷达波的吸收和反射特性。通过适当选择磁场强度、等离子体密度和等离子体碰撞频率,可以使等离子体对某一雷达波段的吸收达到90%以上;等离子体密度是一个重要参数,合适的等离子体密度不仅可以增大对雷达波的吸收,同时减小了界面对雷达波的反射;磁场强度显著地影响等离子体对雷达波的吸收,不同的磁场强度对应不同频段的共振吸收峰,共振吸收带宽约为2 GHz。目前产生隐身等离子体的方法主要有2种:一种是利用等离子体发生器产生等离子体,即在低温下,通过电源以高频和高压的形式提供的高能量产生间隙放电、沿面放电等形式,将气体介质激活、电离形成等离子体;另一种是在兵器特定部位(如强散射区)涂一层放射性同位素,它的辐射剂量应确保它的α射线电离空气所产生的等离子体包层具有足够的电子密度和厚度,以确保对雷达波有最强的吸收。与前者相比,后者比较昂贵且维护困难。等离子体按其热容量大小可分为冷等离子体、热等离子体和低温等离子体,目前,国外主要应用低温等离子体。等离子体隐身技术与目前已经广泛应用的隐身技术相比,具有很多优势 (1) 改变了常规隐身技术的被动实现手段,采取了主动控制方法实现隐身,使隐身系统便于维护; (2) 不需改变飞行器的气动外形设计,不会影响飞行器的飞行性能和战术技术性能;此外,俄罗斯进行的风洞试验表明,利用等离于体隐身技术还可以减少飞行器飞行阻力的30%以上; (3) 使用简便,等离子体可做成能快速开、关的隐身系统,在通信或雷达系统尚未发送或接收时,通过快速打开等离子体,将能覆盖电磁波传输系统; [ 转自铁血社区 ](4) 等离子体的隐身效果随雷达波波长的增加而增加,而涂层隐身材料的隐身效果随波长的增加而降低。这种隐身技术不仅解决了吸波涂层厚度和质量方面的局限性,具有吸波频带宽,吸收率高,隐身因素多且效果好等优点,而且能满足高反射局部需求,尤其适用于导弹的隐身; (5) 使用周期长,造价相对低廉,维护费用低。等离子体隐身技术作为新概念的飞行武器防御系统,在军事上具有极高的潜在应用价值,将成为隐身技术发展的新的突破方向及世界各军事强国竞相研究的焦点。目前在理论和试验上已经获得成功,一旦在工程上研制成功,将对未来空战产生革命性的影响。 但存在的主要问题是:一是兵器安装等离子体发生器的部位无法隐身;二是所需电源功率很高,设备庞大;三是很难控制。因此,在满足对等离子体包层厚度的要求下,必须降低等离子体发生器的电源功率和减小设备体积。 3.目前国外等离子体隐身技术应用状况 自20世纪60年代以来,美国、前苏联等军事强国就开始研究等离子体吸收电磁波的性能。80年代初,前苏联最早开始进行等离子体实验,研究的重点是等离子体在高空超声速飞行器上的潜在应用; 1992年美国一份解密国防报告显示,美国休斯实验室进行的一项为期2年、投资65万美元的实验表明,应用等离子体技术,可使一个13cm长的微波平面反射器的雷达散射截面(RCS)在4~14GHz频率范围内平均降低20 dB ,即雷达获取回波的信号强度减小到原来的1%。1997年,美国海军委托田纳西大学等单位发展等离子体隐身天线 。其机理是:将等离子体放电管作为天线元件,当放电管通电时就成为导体,能发射和接收无线电信号;当断电时便成为绝缘体,基本不反射敌探测信号。初步的演示已显示了这种天线的发射接收功能和隐身特性。 近年来,等离子体隐身技术在俄罗斯取得了突破性进展,其研究领先于美国。据报道,俄罗斯克尔德什研究中心开发出第1代和第2代等离子体发生器,并在飞机上进行了试验,获得了成功。第1代产品是等离子体发生片,其厚度为015~017 mm,电压为几千伏,电流为零点几毫安,将该发生片贴在飞行器的强散射部位,电离空气即可产生等离子体。第2代产品是等离子体发生器,在等离子体发生器中加入易电离的气体,经过“脉冲电晕”,气体由高温转为低温,即可产生等离子体。第2代产品的质量不到100 kg,已经全面进行了地面和飞行试验,它不仅能减弱雷达反射信号,还能通过改变反射信号的频率以实现隐身。俄罗斯前不久进行的隐形试验表明:应用等离子隐形技术隐形,可使米格飞机雷达截面在4~14 GHz频率范围内,雷达获取回波信号强度减少到原来的1%。1999年初,克尔德什研究中心应用新的物理知识研制出了效果更好的第3代产品 ,据预测,第3代产品可能利用飞行器周围的静电能量来减小飞行器的雷达截面。俄罗斯未来的1142隐身战斗机样机并没有像美国那样的隐身外形设计,其隐身能力是利用他们称之为“自己开发的减少雷达特征的方法”来实现的,这很可能包括等离子体隐身技术。相应的成品也已形成出口生产能力 。由于等离子体隐身技术已受到世界军事强国的关注,因此它将可能具有广阔的应用前景。法国的研究人员正在研制一种新的有源隐身系统,据报道可能会采用等离子体屏蔽技术。对等离子的某些研究成果很可能用于作战飞机特别明显部位的屏蔽,如空气进口,排气口或机头。澳大利亚国立大学也已研制出了等离子体隐身天线 。国内的有关理论研究也常见报道 。科学家们还在研究,利用等离子“云团”巧妙拦截飞行器。如俄罗斯科学家新近推出一种采用等离子体武器拦截导弹的新方法,即利用彼此交叉的大功率能束或光束改变导弹的飞行环境,使飞行中的导弹失去战斗作用。预计这种新武器不久即可用于实战。 [ 转自铁血社区 ]4 结 束 语 与美国主要依赖改变飞机外形及采用吸波材料的隐身技术相比,等离子体隐身技术的最大特点是不影响飞机的飞行性能,且费用较低。同时,从原理上来说,它也应该可在其他兵器上,如导弹、舰艇、装甲车辆等上得到应用。如果这个设想能成立,那么这种通用性对经费的节省将是十分有意义的。当然,这种隐身技术因其涉及的学科领域较多,是一项十分复杂的系统工程,包括大气等离子体技术、电磁理论与工程、空气动力学、机械与电气工程等学科,研究此项技术必须首先做好各学科之间的交叉、配合的研究。