本文目录一览:
- 1、中国的集成电路产业现状怎么样
- 2、集成电路是怎样发展起来的?
- 3、集成电路产业发展现状与未来趋势分析资料
- 4、集成电路发展史
- 5、几十年来集成电路技术的发展很快
- 6、集成电路产业的集成电路发展简史
中国的集成电路产业现状怎么样
目前我国人工智能、汽车电子、物联网、5G等现代科技行业的发展都离不开集成电路的支持,换言之,集成电路是目前我国科技发展的核心零部件,因此我国政府高度重视集成电路的发展,出台了多项政策支持集成电路行业。尤其是在经济发达的长三角和泛珠三角区域,上海、广东等城市拥有强大的经济和人才优势,在“十四五”期间形成了集成电路集群化发展的趋势。
1、集成电路渗透到我国各个行业
集成电路是我国科技发展的重要组成部分,也是我国各行各业实现智能化、数字化的基础。目前我国集成电路渗透到我国各个行业,例如工业机器人、5G网络建设、汽车电子以及计算机等重要科技领域,可以说集成电路是我国科技发展的基石,集成电路技术发展到位,我国才能够在科技领域不受制于人。
2、我国集成电路行业依赖进口较为严重
目前集成电路已渗透到我国各个行业,对于我国科技、工业等领域发展显得尤为重要,但因集成电路行业具有较高的技术壁垒,我国目前尚未完全突破技术壁垒,因此在7nm等精度较高的集成电路领域,我国仍需要进口。换言之,在关键技术领域,我国集成电路依赖进口较为严重。
2017-2020年,我集成电路进出口数量均呈现上升趋势,且进出口逆差也在不断扩大。根据海关总署数据显示,2020年中国共进口集成电路5431亿个,较2019年增加985亿个;出口集成电路2596亿个,较2019年增加411个,贸易逆差为2835亿个。2021年1-2月,我国累计进口集成电路963亿个;出口集成电路468亿个,贸易逆差为495亿个。
3、多项规划指明集成电路发展方向
在《中国制造2025》中针对集成电路产业的市场规模、产能规模等提出了具体的量化目标,同时在全国两会发布的《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》中也提到在事关国家安全和发展全局的基础核心领域,制定实施战略性科学计划和科学工程。瞄准人工智能、量子信息、集成电路等前沿领域,实施一批具有前瞻性、战略性的国家重大科技项目。
从国家急迫需要和长远需求出发,集中优势资源攻关关键元器件零部件和基础材料等领域关键核心技术。支持北京、上海、粤港澳大湾区形成国际科技创新中心,建设北京怀柔、上海张江、大湾区、安徽合肥综合性国家科学中心,支持有条件的地方建设区域科技创新中心。
3、政策规划下我国集成电路市场规模不断提升
在我国政策的促进下,我国集成电路行业主要代表企业不断突破技术壁垒,促进我国集成电路行业的发展,其中,中芯国际已能够生产n+1 nm的集成电路,虽不能完全替代7nm的芯片,但也能在短时间内解决我国机场电路短缺的问题。
根据中国半导体行业协会数据显示,2015-2020年我国集成电路市场规模呈逐年增加趋势。2020年我国集成电路市场规模为8848亿元,较2019年增加17.00%。
4、“十四五”期间各省份出台规划促进集成电路发展
目前长三角地区的安徽省、江苏省、上海市,泛珠三角地区的江西省、福建省、广东省、四川省均对“十四五”期间,集成电路的发展做出了明确的目标规划,形成了较为明确的集群化发展,除此之外,湖北省、重庆市以及山西省也针对“十四五”期间集成电路的发展做出了明确的目标规划。
综合来看,集成电路行业的发展对于我国工业智能化、5G网络、汽车电子、计算机等关键领域的发展起着至关重要的作用,但目前由于我国尚未完全突破集成电路的技术壁垒,到至我国对集成电路的进口依赖较为明显,未来在《中国智造2025》以及《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》的支持下,我国集成电路的发展会越来越好。
除国家层面外,我国经济较为发达的省份也在不停的摸索集成电路的发展,目前在长三角和泛珠三角地区已形成了集成电路发展的集群效应。
—— 更多数据请参考前瞻产业研究院《中国集成电路行业市场需求预测与投资战略规划分析报告》
集成电路是怎样发展起来的?
现在人们公认,世界上最早的集成电路,是1958年美国物理学家基尔比和诺伊斯两人各自独立研究发明的。他们两人同时被推崇为微电子学的创始人。
早在第二次世界大战期间,就有人把油墨状的电阻材料与镀银金属片设法印在陶瓷基片上,做成电阻和连接线的组合体。印刷电路工艺的发展及晶体管的发明,为集成电路的发明做了必要的技术准备。
20世纪50年代以来,宇航工业、通信产业和计算机产业的迅速发展,迫切需要各种性能稳定、能实现更加复杂功能的半导体器件,而且还希望这种器件越小巧越好。1957年,前苏联第一颗人造地球卫星的发射,促使美国军方加快了实现电子器件微型化的步伐。
通信工程师们设想把一些晶体管及元件以新的形式组合成一种更复杂的线路,而不是简单地拼凑在一起,这种线路称为集成电路。从外形看来,它们就是小小的硅片,因此人们也称它们为芯片。至今,在各种通信设备、计算机及各种电器设备中,处处都可以见到这种芯片。
集成电路产业发展现状与未来趋势分析资料
集成电路产业信息产业的核心之一,是引领新一轮科技革命和产业变革的关键力量。“十三五”以来,我国集成电路产业快速增长、龙头企业涌现、但产业的整理竞争力有待提升。“十四五”时期我国集成电路产业将如何发展,本文将从发展重点、发展目标两大方面进行分析。
1、“十三五”发展回顾
——国内市场快速增长、贸易逆差扩大
集成电路产业信息产业的核心之一,是引领新一轮科技革命和产业变革的关键力量。“十三五”以来,我国集成电路产业快速增长,2020年,集成电路产业销售额达8848亿元,平均增长率达到20%,为同期全球产业增速的3倍。但同时,我国集成电路的进出口贸易逆差总体扩大,2020年达2334.4亿美元。
——中国龙头企业涌现、整体实力待提升
在全球集成电路产业的竞争格局中,目前仍以美国“一家独大”,中国大陆、韩国快速发展,而欧洲、日本、中国台湾则有所衰退。
在国家政策和市场需求的驱动下,国内涌现出一批龙头企业,在集成电路设计环节,有海思半导体、豪威集团、智芯微电子等企业;在集成电路的研发创新方面,2020年,浪潮智能、华虹集团和长江储存科技的专利公开量排名靠前。
2、“十四五”发展重点解读
——技术、工艺、研发、宽禁带半导体
根据《“十四五”规划纲要和2035年远景目标纲要》,“十四五”期间,我国集成电路产业将围绕技术升级、工艺突破、产业发展和设备材料研发四个方面重点发展:
此外,在2021年全国“两会”期间,全国人大代表们围绕金融支持模式、第三代半导体发展、产业资源共享等内容为集成电路产业的发展建言献策:
——围绕四大环节重点发展
2014年,国务院为支持集成电路产业的发展,印发了《国家集成电路产业发展推进纲要》。《纲要》提出了我国集成电路产业在2015-2030年间的发展目标,并从集成电路设计业、制造业、封测业和关键装备、材料四个方面提出了主要任务和发展重点。
3、“十四五”发展目标解读
——2030年:产业链主要环境达到国际先进水平
根据《国家集成电路产业发展推进纲要》中提出的发展目标,至2015年,集成电路产业销售收入超过3500亿元;至2020年,全行业销售收入年均增速超过20%,截至2021年3月末,这两项目标均已完成。展望2030年,我国集成电路产业链主要环节达到国际先进水平,一批企业进入国际第一梯队,实现跨越发展。
另根据国家制造强国建设战略咨询委员会发布的《中国制造2025》重点领域技术路线图,其中针对集成电路产业的市场规模、产能规模等提出了具体的量化发展目标:
——各省市发展目标汇总
此外,全国各省市也围绕集成电路产业的产业规模、龙头企业数量等内容,提出了“十四五”时期的发展目标:
—— 更多行业相关数据请参考前瞻产业研究院《中国集成电路行业市场需求预测与投资战略规划分析报告》
集成电路发展史
个人闲来无事是写的,现粘贴如下:
首先有集成电路这一想法的是英国科学家Dummer,那是在1952年,在皇家信号和雷达机构的一个电子元器件会议上他说:“随着晶体管的出现和对半导体的全面研究,现在似乎可以想象,未来电子设备是一种没有连接线的固体组件。”当然,那时还没有“集成电路”这一名词。然而,集成电路的真正发明却是在美国,是在6年之后的1958年(也有人认为是1959年,具体原因接下来解释)。
1958年9月12日,TI的Kilby发明了世界首块集成电路,这是一个相移振荡器,集成了2个晶体管、2个电容和8个电阻——共12个元器件,该发明与1959年2月6日申请专利,1964年6月26日被批准。而到了1959年,Fairchild的Noyce发明了基于硅平面工艺的集成电路,1959年7月30日,Noyce为自己的发明申请了专利,1961年4月26日被批准。虽然Noyce比Kilby发明集成电路和申请专利在后,但批准在前,而且Noyce发明的集成电路更适合于大批量生产,所以会有一些人在关于谁先发明了集成电路的问题上产生了分歧。其实Kilby和Noyce被认为是集成电路共同的发明人,问题在于1958和1959不能被认为是共同的发明时间,而必须是其中的一个,我习惯于把它说成是1958年。
而到了1968年,Noyce和Moore以及Fairchild的其他一些雇员成立了Intel,1971年便生产出了世界首枚CPU——集成了2300个晶体管的4004,紧接着,次年8008,再次年8080……尽管CPU诞生于1971年,然而它被推向市场,换句话说就是普通平民可以买到是1981年的事。那是1981年的8月12日,IBM推出型号为IBM5150的计算机,这是最早的PC,CPU采用Intel的8088(1979年发明),系统采用Microsoft的DOS,内存16K,再配一个5.25英寸的软驱,售价1565美元。但你知道,当时的1565美元跟现在的1565美元不一样,那时钱实啊,按照今天的物价指数,大约相当于现在的4000美元,在2011年8月13日这样的日子,汇率是6.3902,那就是25560.8元人民币。
早期的IC未形成独立的产业,电子系统厂商把自己生产的IC用于自己的产品,只把一小部分销往市场,而同时也会从市场购进一些。Intel和AMD开创了IC业的新纪元,他们只向市场供应通用的IC,而不使用IC去生产产品,当然也不会从市场购进IC。这种自行设计、用自己的生产线制造、自己封装和测试、最后出售IC成品的厂商被称为IDM(Integrated Device Manufacture,集成器件制造商)。尽管如此,IDM还是有严格定义的:IC的对外销售额超过IC总产值25%的企业就可以称作是IDM了(如Motorola、TI、Sony),而没有超过的叫做系统厂商(如IBM、HP)。根据这一定义,IDM并不意味着不生产系统产品,系统厂商也并不意味着不生产IC。区别仅在于它们生产的IC(或者干脆没生产)有多少用于自己的系统产品,有多少用于直接出售。
再后来,出现了一些这样的公司,它们只设计IC,并不生产,我们称之为Fabless,叫做无生产线设计公司。它们设计完成后,制造这一环节仍交给IDM完成,IDM的生产线除了生产自己设计的IC以外,还帮Fabless进行生产。1987年,TSMC(台台湾积体电路制造股份有限公司,台积电)成立,2000年,SMIC(中芯国际集成电路制造有限公司,中芯国际)成立,这些公司开创了一种新的模式,它没有自己的产品,不设计也不使用,只是单纯地提供制造服务,我们称之为Foundry。这类公司的出现,不仅Fabless的设计成果有了天经地义的归宿,而且就连IDM也把自己制造环节的一部分让给Foundry来做,就Foundry而言,有时它接到来自IDM的生产任务比Fabless的还要多。再后来呢?连封装测试也自成一家,形成独立的产业。
纵观今天的IC业,设计业、制造业、封测业三足鼎立,当然也不乏IDM这样的一条龙式的企业,但是系统厂商在IC市场上的份额越来越低,(注意!我说的是在IC市场上),濒临灭绝!(注意!我说的是市场份额濒临灭绝。公司并没有灭绝,而是他们意识到这种自己生产芯片仅供自己使用的模式不划算,转型了。)
几十年来集成电路技术的发展很快
最近十几年来集成电路的发展还是特别快速的,因为现在几十年以来,国家大力发展自主创新企业的科研项目,所以很多公司都会有自己的研究的团队,所以对集成电路技术的发展起到了很大的推进作用。
集成电路产业的集成电路发展简史
1947年:贝尔实验室肖特莱等人发明了晶体管,这是微电子技术发展中第一个里程碑;集成电路
1950年:结型晶体管诞生; 1950年: R Ohl和肖特莱发明了离子注入工艺; 1951年:场效应晶体管发明; 1956年:C S Fuller发明了扩散工艺; 1958年:仙童公司Robert Noyce与德仪公司基尔比间隔数月分别发明了集成电路,开创了世界微电子学的历史; 1960年:H H Loor和E Castellani发明了光刻工艺; 1962年:美国RCA公司研制出MOS场效应晶体管; 1963年:F.M.Wanlass和C.T.Sah首次提出CMOS技术,今天,95%以上的集成电路芯片都是基于CMOS工艺; 1964年:Intel摩尔提出摩尔定律,预测晶体管集成度将会每18个月增加1倍; 1966年:美国RCA公司研制出CMOS集成电路,并研制出第一块门阵列(50门); 1967年:应用材料公司(Applied Materials)成立,现已成为全球最大的半导体设备制造公司; 1971年:Intel推出1kb动态随机存储器(DRAM),标志着大规模集成电路出现; 1971年:全球第一个微处理器4004由Intel公司推出,采用的是MOS工艺,这是一个里程碑式的发明; 1974年:RCA公司推出第一个CMOS微处理器1802; 1976年:16kb DRAM和4kb SRAM问世; 1978年:64kb动态随机存储器诞生,不足0.5平方厘米的硅片上集成了14万个晶体管,标志着超大规模集成电路(VLSI)时代的来临; 1979年:Intel推出5MHz 8088微处理器,之后,IBM基于8088推出全球第一台PC; 1981年:256kb DRAM和64kb CMOS SRAM问世; 1984年:日本宣布推出1Mb DRAM和256kb SRAM; 1985年:80386微处理器问世,20MHz; 1988年:16M DRAM问世,1平方厘米大小的硅片上集成有3500万个晶体管,标志着进入超大规模集成电路(VLSI)阶段; 1989年:1Mb DRAM进入市场; 1989年:486微处理器推出,25MHz,1μm工艺,后来50MHz芯片采用 0.8μm工艺; 1992年:64M位随机存储器问世; 1993年:66MHz奔腾处理器推出,采用0.6μm工艺; 1995年:Pentium Pro, 133MHz,采用0.6-0.35μm工艺;集成电路
1997年:300MHz奔腾Ⅱ问世,采用0.25μm工艺; 1999年:奔腾Ⅲ问世,450MHz,采用0.25μm工艺,后采用0.18μm工艺; 2000年:1Gb RAM投放市场; 2000年:奔腾4问世,1.5GHz,采用0.18μm工艺; 2001年:Intel宣布2001年下半年采用0.13μm工艺。 2003年:奔腾4 E系列推出,采用90nm工艺。 2005年:intel 酷睿2系列上市,采用65nm工艺。 2007年:基于全新45纳米High-K工艺的intel酷睿2 E7/E8/E9上市。 2009年:intel酷睿i系列全新推出,创纪录采用了领先的32纳米工艺,并且下一代22纳米工艺正在研发。 (ball grid array) 球形触点陈列,表面贴装型封装之一。在印刷基板的背面按陈列方式制作出球形凸点用 以代替引集成电路
脚,在印刷基板的正面装配LSI 芯片,然后用模压树脂或灌封方法进行密封。也称为凸点陈列载体(PAC)。引脚可超过200,是多引脚LSI 用的一种封装。封装本体也可做得比QFP(四侧引脚扁平封装)小。例如,引脚中心距为1.5mm 的360 引脚 BGA 仅为31mm 见方;而引脚中心距为0.5mm 的304 引脚QFP为40mm 见方。而且BGA 不 用担心QFP 那样的引脚变形问题。该封装是美国Motorola 公司开发的,首先在便携式电话等设备中被采用,今后在美国有 可 能在个人计算机中普及。最初,BGA 的引脚(凸点)中心距为1.5mm,引脚数为225。也有一些LSI 厂家正在开发500 引脚的BGA。BGA 的问题是回流焊后的外观检查。尚不清楚是否有效的外观检查方法。有的认为,由于焊接的中心距较大,连接可以看作是稳定的,只能通过功能检查来处理。 美国Motorola 公司把用模压树脂密封的封装称为OMPAC,而把灌封方法密封的封装称为GPAC(见OMPAC 和GPAC)。 表面贴装型封装之一,即用下密封的陶瓷QFP,用于封装DSP 等的逻辑LSI 电路。带有窗 口的集成电路
Cerquad 用于封装EPROM 电路。散热性比塑料QFP 好,在自然空冷条件下可容许1. 5~ 2W 的功率。但封装成本比塑料QFP 高3~5 倍。引脚中心距有1.27mm、0.8mm、0.65mm、 0.5mm、 0.4mm 等多种规格。引脚数从32 到368。 带引脚的陶瓷芯片载体,表面贴装型封装之一,引脚从封装的四个侧面引出,呈丁字形 。 带有窗口的用于封装紫外线擦除型EPROM 以及带有EPROM 的微机电路等。此封装也称为 QFJ、QFJ-G(见QFJ)。 (dual tape carrier package) 双侧引脚带载封装。TCP(带载封装)之一。引脚制作在绝缘带上并从封装两侧引出。由于 利 用的是集成电路
TAB(自动带载焊接)技术,封装外形非常薄。常用于液晶显示驱动LSI,但多数为 定制品。 另外,0.5mm 厚的存储器LSI 簿形封装正处于开发阶段。在日本,按照EIAJ(日本电子机 械工 业)会标准规定,将DICP 命名为DTP。 (surface mount type) 表面贴装型PGA。通常PGA 为插装型封装,引脚长约3.4mm。表面贴装型PGA 在封装的 底面有陈列集成电路
状的引脚,其长度从1.5mm 到2.0mm。贴装采用与印刷基板碰焊的方法,因而 也称 为碰焊PGA。因为引脚中心距只有1.27mm,比插装型PGA 小一半,所以封装本体可制作得 不 怎么大,而引脚数比插装型多(250~528),是大规模逻辑LSI 用的封装。封装的基材有 多层陶 瓷基板和玻璃环氧树脂印刷基数。以多层陶瓷基材制作封装已经实用化。 (pin grid array) 陈列引脚封装。插装型封装之一,其底面的垂直引脚呈陈列状排列。封装基材基本上都 采 用多层陶集成电路
瓷基板。在未专门表示出材料名称的情况下,多数为陶瓷PGA,用于高速大规模 逻辑 LSI 电路。成本较高。引脚中心距通常为2.54mm,引脚数从64 到447 左右。 了为降低成本,封装基材可用玻璃环氧树脂印刷基板代替。也有64~256 引脚的塑料PG A。 另外,还有一种引脚中心距为1.27mm 的短引脚表面贴装型PGA(碰焊PGA)。(见表面贴装 型PGA)。 (quad flat non-leaded package) 四侧无引脚扁平封装。表面贴装型封装之一。现在多称为LCC。QFN 是日本电子机械工业 会规定的集成电路
名称。封装四侧配置有电极触点,由于无引脚,贴装占有面积比QFP 小,高度 比QFP 低。但是,当印刷基板与封装之间产生应力时,在电极接触处就不能得到缓解。因此电 极触点 难于作到QFP 的引脚那样多,一般从14 到100 左右。 材料有陶瓷和塑料两种。当有LCC 标记时基本上都是陶瓷QFN。电极触点中心距1.27mm。 塑料QFN 是以玻璃环氧树脂印刷基板基材的一种低成本封装。电极触点中心距除1.27mm 外, 还有0.65mm 和0.5mm 两种。这种封装也称为塑料LCC、PCLC、P-LCC 等。 (Small Outline Package(Wide-Jype)) 宽体SOP。部分半导体厂家采用的名称。